Improved CTA Coronary Segmentation with a Volume-Specific Intensity Threshold

نویسندگان

  • Muhammad Moazzam Jawaid
  • Ronak Rajani
  • Panos Liatsis
  • Constantino Carlos Reyes-Aldasoro
  • Gregory G. Slabaugh
چکیده

State-of-the-art CTA imaging equipment has increased increased clinician's ability to make non-invasive diagnoses of coronary heart disease; however, an effective interpretation of the cardiac CTA becomes cumbersome due to large amount of imaged data. Intensity based background suppression is often used to enhance the coronary vasculature but setting a fixed threshold to discriminate coronaries from fatty muscles could be misleading due to non-homogeneous response of contrast medium in CTA volumes. In this work, we propose a volumespecific model of the contrast medium in the coronary segmentation process to improve the segmentation accuracy. The influence of the contrast medium in a CTA volume was modelled by approximating the intensity histogram of the descending aorta with Gaussian approximation. It should be noted that a significant variation in Gaussian mean for 12 CTA volumes validates the need of volume-wise exclusive intensity threshold for accurate coronary segmentation. Moreover, the effectiveness of the adaptive intensity threshold is illustrated with the help of qualitative and quantitative results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial Differential Equations applied to Medical Image ‎Segmentation

‎This paper presents an application of partial differential equations(PDEs) for the segmentation of abdominal and thoracic aortic in CTA datasets. An important challenge in reliably detecting aortic is the need to overcome problems associated with intensity inhomogeneities. Level sets are part of an important class of methods that utilize partial differential equations (PDEs) and have been exte...

متن کامل

Contribution of 68Ga-PSMA PET/CT to targeting volume delineation of prostate cancer treated with conformal radiation therapy: Which SUV threshold is appropriate?

Introduction: Prostate-specific membrane antigen (PSMA) has been demonstrated as a promising tool for specific imaging of prostate cancer (PCa) via positron emission tomography-computed tomography (PET/CT) scanning. Radiation treatment planning (RTP) based on 68Ga-PSMA PET/CT scanning can also lead to some decision modifications.  The specific goal o...

متن کامل

A hybrid energy model for region based curve evolution - Application to CTA coronary segmentation

BACKGROUND AND OBJECTIVE State-of-the-art medical imaging techniques have enabled non-invasive imaging of the internal organs. However, high volumes of imaging data make manual interpretation and delineation of abnormalities cumbersome for clinicians. These challenges have driven intensive research into efficient medical image segmentation. In this work, we propose a hybrid region-based energy ...

متن کامل

Segmentation of Soft atherosclerotic plaques using active contour models

Detection of non-calcified plaques in the coronary tree is a challenging problem due to the nature of comprising substances. Hard plaques are easily discernible in CTA data cloud due to apparent bright behaviour, therefore many approaches have been proposed for automatic segmentation of calcified plaques. In contrast soft plaques show very small difference in intensity with respect to surroundi...

متن کامل

Automated Segmentation of Coronary Arteries Based on Statistical Region Growing and Heuristic Decision Method

The segmentation of coronary arteries is a vital process that helps cardiovascular radiologists detect and quantify stenosis. In this paper, we propose a fully automated coronary artery segmentation from cardiac data volume. The method is built on a statistics region growing together with a heuristic decision. First, the heart region is extracted using a multi-atlas-based approach. Second, the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017